Module 1 Scientific Notation, Exponents, and Irrational Numbers	Module 2 Rigid Motions and Congruent Figures	Module 3 Dilations and Similar Figures	Module 4 Linear Equations in One and Two Variables	Module 5 Systems of Linear Equations	Module 6 Functions and Bivariate Statistics
Topic A: Introduction to Scientific Notation Lesson 1: Large and Small Positive Numbers - Write very large and very small numbers in a form that uses exponents to prepare students for scientific notation. - Approximate very large and very small quantities. 8.EE.A.3, MP2, 8.Mod1.AD8 Lesson 2: Comparing Large Numbers - Write numbers as a single digit times a power of 10 in exponential form to approximate quantities. - Compare large and small positive numbers by using times as much as language. 8.EE.A.3, 8.EE.A.4, MP7, 8.Mod1.AD9, 8.Mod1.AD11, 8.Mod1.AD12 Lesson 3: Time to Be More Precise-Scientific Notation - Write numbers given in standard form in scientific notation. 8.EE.A.3, MP3, 8.Mod1.AD8	Topic A: Rigid Motions and Their Properties Lesson 1: Motions of the Plane - Informally describe how to map a figure to its image. - Demonstrate that the distance between two points stays the same under rigid motions. 8.G.A.1, 8.G.A.1.a, 8.G.A.1.b, 8.G.A.1.c, MP5, 8.Mod2.AD1 Lesson 2: Translations - Apply translations to the plane. - Identify the basic properties of translations. 8.G.A.1, 8.G.A.1.a, 8.G.A.1.b, 8.G.A.1.c, MP6, 8.Mod2.AD1 Lesson 3: Reflections - Apply reflections to the plane. - Identify the basic properties of reflections. 8.G.A.1, 8.G.A.1.a, 8.G.A.1.b, 8.G.A.1.c, MP8, 8.Mod2.AD1 Lesson 4: Translations and Reflections on the Coordinate Plane	Topic A: Dilations Lesson 1: Exploring Dilations - Informally describe the effects of dilations. - Classify a dilation as a transformation that is not a rigid motion. 8.G.A.3, MP8, 8.Mod3.AD2 Lesson 2: Enlargements - Apply a dilation with a whole-number scale factor greater than 1. - Describe the effects of a dilation with a whole-number scale factor greater than 1. 8.G.A.3, MP6, 8.Mod3.AD2 Lesson 3: Reductions and More Enlargements - Apply a dilation with a scale factor greater than 0 . - Describe the effects of a dilation with a scale factor greater than 0 . 8.G.A.3, MP8, 8.Mod3.AD2 Topic B: Properties of Dilations	Topic A: Linear Equations in One Variable Lesson 1: Equations - Analyze an equation to make sense of how to solve it. - Identify whether an equation is a linear equation. 8.EE.C.7.b, MP7, 8.Mod4.AD11 Lesson 2: Solving Linear Equations - Identify the properties of equality. - Solve multi-step linear equations in one variable with variables on both sides of the equations. 8.EE.C.7, 8.EE.C.7.b, MP6, 8.Mod4.AD9, 8.Mod4.AD11 Lesson 3: Solving Linear Equations with Rational Coefficients - Solve multi-step linear equations in one variable with rational coefficients. 8.EE.C.7, 8.EE.C.7.b, MP7, 8.Mod4.AD9, 8.Mod4.AD11 Lesson 4: Using Linear Equations to Solve Problems - Define variables and write equations that represent a given situation.	Topic A: Solving Systems of Linear Equations Graphically Lesson 1: Solving Problems with Equations and Their Graphs - Formulate a problem from a context. - Apply different mathematical tools to model, analyze, and answer a realworld question. 8.EE.C.8.a, 8.EE.C.8.b, 8.EE.C.8.c, MP4, 8.Mod5.AD1, 8.Mod5.AD3, 8.Mod5.AD5 Lesson 2: Introduction to Systems of Linear Equations - Graph a system of linear equations to identify the solution. - Recognize that the ordered pair representing the intersection point of the lines is the solution to the system of linear equations. 8.EE.C.8.a, MP6, 8.Mod5.AD1 Lesson 3: Identifying Solutions - Recognize that a system of linear equations that represents parallel lines has no solution. - Analyze a system of linear equations to determine whether a solution exists.	Topic A: Functions Lesson 1: Motion and Speed - Calculate the average speed of linear and nonlinear motion. - Understand that a function is a special type of rule. 8.F.A.1, MP8, 8.Mod6.AD1 Lesson 2: Definition of a Function - Determine that a function is a rule that assigns to each input one and only one output. - Identify functions that can be represented by an equation and those that cannot. 8.F.A.1, MP2, 8.Mod6.AD1 Lesson 3: Linear Functions and Proportionality - Write equations that represent linear functions. - Determine what inputs make sense in the context of a linear function. 8.F.A.3, MP2, 8.Mod6.AD3 Lesson 4: More Examples of Functions - Determine that not all functions have numerical inputs and outputs.

Lesson 4: Adding and Subtracting
Numbers Written in Scientific
Notation

- Add and subtract numbers written in
scientific notation.
- Rewrite sums and differences in
scientific notation.
8.EE.A.4, MP6, 8.Mod1.AD10,
8.Mod1.AD12

Topic B: Properties and Definitions of Exponents

Lesson 5: Products of Exponential Expressions with Whole-Number Exponents

- Apply understanding of exponential notation to write equivalent expressions for $x^{m} \cdot x^{n}$.

8.EE.A.1, MP8, 8.Mod1.AD5

Lesson 6: More Properties of Exponents

- Encounter and apply properties of exponents, including raising powers to powers, raising products to powers, and raising quotients to powers.

8.EE.A.1, 8.Mod1.AD5

Lesson 7: Making Sense of the Exponent of 0

- Define x^{0} by confirming that the definition upholds the properties of exponents.
- Evaluate powers with an exponent of 0.
8.EE.A.1, 8.EE.A.3, MP3,
8.Mod1.AD5, 8.Mod1.AD8

Lesson 8: Making Sense of Integer Exponents

- Explore and develop an understanding
- Explore and develop an
of negative exponents.
- Apply translations and reflections on
the coordinate plane.
- Use coordinates to describe the location of an image under
8.G.A.3, MP6, 8.Mod2.AD4

Lesson 5: Rotations

- Apply rotations to the plane. - Identify the basic properties of rotations.
8.G.A.1, 8.G.A.1.a, 8.G.A.1.b, 8.G.A.1.c, MP6, 8.Mod2.AD1

Lesson 6: Rotations on the

Coordinate Plane

- Apply rotations around the origin on the coordinate plane.
- Use coordinates to describe the location of an image under a rotation around the origin.
8.G.A.3, MP8, 8.Mod2.AD4

Topic B: Rigid Motions and Congruent Figures

Lesson 7: Working Backward

- Precisely describe the rigid motion
required to map an image back onto
its original figure.
8.G.A.1, 8.G.A.1.a, 8.G.A.1.b,
8.G.A.1.c, 8.G.A.2, MP8,
8.Mod2.AD1, 8.Mod2.AD3

Lesson 8: Sequencing the Rigid

Motions

- Describe a sequence of rigid motions
that maps one figure onto another.
- Determine that the properties of
individual rigid motions also apply for a sequence of rigid motions.

8.G.A.1.c, 8.G.A.2, MP1,

8.Mod2.AD1, 8.Mod2.AD3

Lesson 4: Using Lined Paper to
Explore Dilations

- Draw the image of a segment under a dilation.
- Learn the properties of dilations.
8.G.A.3, MP8, 8.Mod3.AD2

Lesson 5: Figures and Dilations

- Draw images of figures under
dilations with various scale factors. 8.G.A.3, MP5, 8.Mod3.AD2

Lesson 6: The Shadowy Hand

- Use a mathematical model to explain
a real-world situation.
- Apply properties of dilations to make
and test predictions.
8.G.A.3, MP4, 8.Mod3.AD2

Lesson 7: Dilations on a Grid - Apply dilations on a grid. 8.G.A.3, MP7, 8.Mod3.AD2

Lesson 8: Dilations on the
Coordinate Plane

- Apply dilations centered at the origin on the coordinate plane.
- Determine the scale factor of
dilation centered at the origin. 8.G.A.3, MP8, 8.Mod3.AD2 8.Mod3.AD3

Topic C: Similar Figures

Lesson 9: Describing Dilations

- Precisely describe a dilation given a
figure and its image.
8.G.A.3, MP8, 8.Mod3.AD2

Lesson 10: Sequencing
Transformations

- Apply sequences of transformations.
8.EE.C.7, MP1, 8.Mod4.AD9

Lesson 5: An Interesting

 Application of Linear Equations, Part 1- Informally show that every rational number has a decimal form that repeats or terminates.
- Use linear equations to write the fraction form of a decimal with one repeating digit.
8.NS.A.1, 8.EE.C.7.b, MP8,
8.Mod4.AD1, 8.Mod4.AD11

Lesson 6: An Interesting Application of Linear Equations, Part 2

- Use linear equations to write the fraction form of any repeating decimal.
8.NS.A.1, 8.EE.C.7.b, MP8,
8.Mod4.AD1, 8.Mod4.AD11

Topic B: The Structure of Linear Equations in One Variable

Lesson 7: Linear Equations with More Than One Solution

- Identify that linear equations in one variable with infinitely many solutions are equivalent to the equation $a=a$. - Solve linear equations in one variable that have only one solution or
infinitely many solutions.
8.EE.C.7.a, 8.EE.C.7.b, MP7,
8.Mod4.AD10, 8.Mod4.AD11

Lesson 8: Another Possible Number
of Solutions

- Identify that linear equations in one variable with no solution are

8.EE.C.8.a, 8.EE.C.8.b, MP7,

 8.Mod5.AD1, 8.Mod5.AD4Lesson 4: More Than One Solution - Recognize that a system of linear equations that represents the same line has infinitely many solutions.

- Analyze whether a system of linear equations has only one solution, no solution, or infinitely many solutions. 8.EE.C.8.a, 8.EE.C.8.b, MP7, 8.Mod5.AD1, 8.Mod5.AD3 8.Mod5.AD4

Lesson 5: Estimating Solutions

- Recognize and describe the limitations of solving a system of linear equations by graphing. 8.EE.C.8.a 8.EE.C.8.b, MP1, 8.Mod5.AD1, 8.Mod5.AD3

Topic B: Solving Systems of Linear Equations Algebraically

Lesson 6: Solving Systems of Linear Equations without Graphing

- Solve systems of linear equations by using the substitution method to write the systems as linear equations in one variable.
8.EE.C.8.b, MP6, MP8,
8.Mod5.AD2

Lesson 7: The Substitution Method

- Solve a system of linear equations by
using the substitution method.
- Apply the multiplication property of equality as part of the substitution method.
8.EE.C.8.a, 8.EE.C.8.b, MP1,
8.Mod5.AD1, 8.Mod5.AD2
- Determine what inputs make sense for a variety of functions. 8.F.A.1, MP7, 8.Mod6.AD1

Lesson 5: Graphs of Functions and Equations

- Determine that if a function can be represented by an equation, then the graph of the function is the same as or some part of the graph of the equation.
- Determine whether a given graph represents a function. 8.F.A.1, MP6, 8.Mod6.AD1

Topic B: Linear and Nonlinear Functions

Lesson 6: Linear Functions and

 Rate of Change- Calculate rates on a given interval to determine whether a function is a linear function.
- Determine the rate of change for a linear function and interpret the rate of change in context.
8.F.A.3, 8.F.A.4, 8.SP.A.3, MP2, 8.Mod6.AD3, 8.Mod6.AD4, 8.Mod6.AD5

Lesson 7: Interpreting Rate of
Change and Initial Value

- Interpret the rate of change and initial
value of a linear function in context.
- Use rate of change to compare two linear functions.
8.F.A.2, 8.F.A.4, 8.SP.A.3, MP2
8.Mod6.AD2, 8.Mod6.AD4,
8.Mod6.AD5

Lesson 8: Comparing Functions

- Compare two functions represented
in different ways.
8.F.A.2, MP5, 8.Mod6.AD2
- Write equivalent expressions g
expression of the form $\frac{x^{m}}{x^{n}}$.
8.EE.A.1, MP6, 8.Mod1.AD5

8.EE.A.1, MP6, 8.Mod1.AD5

Lesson 9: Writing Equivalent
Expressions

- Write equivalent expressions by using all the properties and definitions of exponents.
8.EE.A.1, MP7, 8.Mod1.AD5

Lesson 10: Evaluating Numerical Expressions by Using Properties of Exponents (Optional)

- Simplify and evaluate exponential expressions by using the properties and definitions of exponents.

8.EE.A.1, MP3, 8.Mod1.AD5

Topic C: Applications of the Properties and Definitions of Exponents

Lesson 11: Small Positive Numbers
in Scientific Notation

- Write small positive numbers in
scientific notation.
- Order numbers written in scientific notation.
8.EE.A.3, MP3, 8.Mod1.AD8

Lesson 12: Operations with
Numbers in Scientific Notation

- Interpret numbers in scientific
notation displayed on digital devices
- Operate with numbers written in
scientific notation.
8.EE.A.4, MP5, 8.Mod1.AD10,
8.Mod1.AD11, 8.Mod1.AD14

Lesson 13: Applications with Numbers in Scientific Notation

Lesson 9: Ordering Sequences of

 Rigid Motions- Determine whether the order in which a sequence of rigid motions is applied matters.
8.G.A.2, 8.G.A.3, MP8,
8.Mod2.AD2, 8.Mod2.AD4

Lesson 10: Congruent Figures

- Describe a sequence of rigid motions
- Describe a sequence of rigid m
that maps one figure onto a congruent figure.
8.G.A.2, MP6, 8.Mod2.AD3

Lesson 11: Showing Figures Are Congruent

- Show figures are congruent by describing a sequencuen motions that maps one figure onto the other.
8.G.A.2, MP1, 8.Mod2.AD2

Topic C: Angle Relationships

Lesson 12: Lines Cut by a

Transversal

- Use informal arguments to establish facts about the angles created when pairs of lines are cut by a transversal.
8.G.A.2, 8.G.A.5, MP6,
8.Mod2.AD2, 8.Mod2.AD3,
8.Mod2.AD6

Lesson 13: Angle Sum of a Triangle

- Use informal arguments to verify that the sum of the interior angle measures of a triangle is 180°.

8.G.A.5, MP3, 8.Mod2.AD5

Lesson 14: Showing Lines Are Parallel

- Use informal arguments to conclude
that lines cut by a transversal are
parallel when angle pairs are
congruent.
- Recognize a sequence that involves dilation and a translation as a single dilation

8.G.A.3, MP1, 8.Mod3.AD2

Lesson 11: Similar Figures

- Describe a sequence of rigid motions or dilations, or both, to show that two figures are similar.
- Identify properties of similar figures. 8.G.A.4, MP6, 8.Mod3.AD4, 8.Mod3.AD5

Lesson 12: Exploring Angles in

 Similar Triangles- Recognize that triangles with two pairs of congruent angles are similar 8.G.A.4, 8.G.A.5, MP7, 8.Mod3.AD4, 8.Mod3.AD5, 8.Mod3.AD6

Lesson 13: Similar Triangles

- Determine whether two triangles are similar by the angle-angle criterion. 8.G.A.4, 8.G.A.5, MP3, 8.Mod3.AD4, 8.Mod3.AD6

Topic D: Applications of Similar Figures

Lesson 14: Using Similar Figures to Find Unknown Side Lengths

- Use properties of similar figures to
find unknown side lengths.
8.G.A.5, MP1, 8.Mod3.AD6

Lesson 15: Applications of Similar Figures

- Use properties of similar figures to solve problems.
8.G.A.5, MP2, 8.Mod3.AD6
equivalent to the equation $a=b$,
where a and b are different numbers.
- Solve linear equations in one variable that have only one solution, infinitely many solutions, or no solution.
8.EE.C.7.a, 8.EE.C.M.b, MP7,
8.Mod4.AD10, 8.Mod4.AD11

Lesson 9: Writing Linear Equations - Write equations with only one solution, infinitely many solutions, or no solution.

- Classify equations based on their number of solutions.
8.EE.C.7.a, MP7, 8.Mod4.AD10

Lesson 10: Using Linear Equations to Solve Real-World Problems - Solve real-world problems by using - Solve real-world problems by using 8.EE.C.7, 8.EE.C.7.a, 8.EE.C.7.b, MP2, 8.Mod.4.AD9, 8.Mod4.AD10, 8.Mod4.AD11

Lesson 11: Planning a Trip

- Solve a real-world problem by using linear equations in one variable. 8.EE.C.7, 8.EE.C.7.b, MP4, 8.Mod.4.AD9, 8.Mod4.AD11

Topic C: Linear Equations in Two Variables

Lesson 12: Solutions to Linear
Equations in Two Variables

- Find solutions to linear equations in two variables.
- Graph the solutions in the coordinate plane.
8.EE.B, MP8, 8.Mod4.AD3

Lesson 13: The Graph of a Linear Equation in Two Variables

Lesson 8: Using Tape Diagrams to Solve Systems of Equations
(Optional)

- Find the solution to a system of linear
equations by using tape diagrams.
- Create tape diagrams to represent a
system of linear equations.
8.EE.C.8.b, MP7, 8.Mod5.AD2,

Lesson 9: Rewriting Equations to Solve a System of Equations

- Solve a system of linear equations by
using the substitution method.
8.EE.C.8.b, MP7, 8.Mod5.AD2, 8.Mod5.AD4

Lesson 10: Choosing a Solution Method

- Analyze graphs and systems of equations to determine the number of solutions.
- Construct and critique arguments about the most efficient solution method.
8.EE.C.8.a, 8.EE.C.8.b, MP3, MP5, 8.Mod5.AD1, 8.Mod5.AD2,

8.Mod5.AD4

Topic C: Writing and Solving Systems of Linear Equations

Lesson 11: Writing and Solving Systems of Equations for Mathematical Problems

- Write and solve systems of linear equations for mathematical problems. 8.EE.C.8.b, 8.EE.C.8.c, MP2,
8.Mod5.AD2, 8.Mod5.AD5

Lesson 12: Solving Historical Problems with Systems of Equations

- Write and solve a system of linear equations given a historical situation.

Lesson 9: Increasing and Decreasing Functions

- Describe qualitative features of a
function by analyzing a graph.
- Sketch the graph of a function given a description.
8.F.B.5, MP6, 8.Mod6.AD6,
8.Mod6.AD7

Lesson 10: Graphs of Nonlinear Functions

- Sketch the graph of a function with certain qualitative features based on a description.
- Classify linear and nonlinear functions given a context, an equation, or a given
graph.
8.F.A.3, 8.F.B.5, MP3,
8.Mod6.AD3, 8.Mod6.AD6,
8.Mod6.AD7

Topic C: Bivariate Numerical Data

Lesson 11: Scatter Plots

- Construct scatter plots and identify - those that show an association between two variables.
- Describe the difference between an
- Describe the difference between an relationship for numerical variables. 8.SP.A.1, MP2, 8.Mod6.AD8

Lesson 12: Patterns in Scatter Plots - Identify and describe patterns of association between two variables represented in scatter plots. - Identify and describe outliers and clusters in context.
8.SP.A.1, MP2, 8.Mod6.AD8

Lesson 13: Informally Fitting a Line to Data

- Operate with numbers written in standard form and scientific notation. 8.EE.A.4, MP1, 8.Mod1.AD10, 8.Mod1.AD11 Lesson 14: Choosing Units of Measurement - Choose appropriate units of measurement and convert units of measurement. 8.EE.A.4, MP2, 8.Mod1.AD13 Lesson 15: Get to the Point - Model a situation by operating with numbers in scientific notation. 8.EE.A.4, MP4, 8.Mod1.AD12 Topic D: Perfect Squares, Perfect Cubes, and the Pythagorean Theorem Lesson 16: Perfect Squares and Perfect Cubes - Recognize perfect squares from 1 to 225 and perfect cubes from 1 to 125. - Determine all numbers that square or cube to a given number. 8.EE.A.2, MP8, 8.Mod1.AD7 Lesson 17: Solving Equations with Squares and Cubes - Solve equations of the forms $x^{2}=p$ and $x^{3}=p$, where p is a rational number and the solutions are rational numbers. 8.EE.A.2, MP3, 8.Mod1.AD6, 8.Mod1.AD7 Lesson 18: The Pythagorean Theorem - Describe the Pythagorean theorem and the conditions required to use it. 8.G.B.7, 8.Mod1.AD15	8.G.A.5, MP3, 8.Mod2.AD6 Lesson 15: Exterior Angles of Triangles - Use informal arguments to establish facts about the exterior angles of triangles. - Determine the unknown measure of an interior or exterior angle of a triangle. 8.G.A.5, MP7, 8.Mod2.AD5, 8.Mod2.AD6 Lesson 16: Find Unknown Angle Measures - Use facts about angle relationships to write and solve equations. 8.G.A.5, MP1, 8.Mod2.AD5, 8.Mod2.AD6 Topic D: Congruent Figures and the Pythagorean Theorem Lesson 17: Proving the Pythagorean Theorem - Explain a proof of the Pythagorean theorem. 8.G.B.6, MP3, 8.Mod2.AD7 Lesson 18: Proving the Converse of the Pythagorean Theorem - Explain a proof of the converse of the Pythagorean theorem. 8.G.B.6, MP3, 8.Mod2.AD7 Lesson 19: Using the Pythagorean Theorem and Its Converse - Use the converse of the Pythagorean theorem to determine whether a triangle is a right triangle. - Use the Pythagorean theorem to find unknown side lengths of right triangles.	Lesson 16: Similar Right Triangles - Apply dilations to create similar right triangles. - Find unknown side lengths in similar right triangles. 8.G.A.3, 8.G.A.5, 8.G.B.7, MP7, 8.Mod3.AD2, 8.Mod3.AD6, 8.Mod3.AD7 Lesson 17: Similar Triangles on a Line - Determine that right triangles with horizontal and vertical legs and with hypotenuses that lie on the same line are similar triangles. 8.EE.B.6, 8.G.A.4, MP8, 8.Mod3.AD1, 8.Mod3.AD3

- Identify that the graph of a linear
equation of the form $A x+B y=C$ is
a line.

8.EE.B, MP6, 8.Mod4.AD2,

8.Mod4.AD3

Lesson 14: Lines with Special Characteristics

- Graph linear equations of the form $A x=C$ and $B y=C$ where A and B are nonzero.

8.EE.B, MP8, 8.Mod4.AD2,

8.Mod4.AD3

Topic D: Slope of a Line
Lesson 15: Comparing Proportional Relationships

- Graph two proportional relationships and use unit rate to compare the
steepness of each line.
- Compare proportional relationships represented in different ways.
8.EE.B.5, MP2, 8.Mod4.AD6

Lesson 16: Proportiona
Relationships and Slope

- Relate the unit rate of a proportional relationship to the slope of the relationship to
associated line.
- Find the slope of a line through the origin.
8.EE.5, 8.EE.6, MP6, 8.Mod4.AD5, 8.Mod4.AD7

Lesson 17: Slopes of Rising Lines

- Find slopes of rising lines by using slope triangles.
- Graph a rising line given the slope and a point on the line.
8.EE.B.6, MP1, 8.Mod4.AD7

Lesson 18: Slopes of Falling Lines
8.EE.C.8.b, 8.EE.C.8.c, MP2,
8.Mod5.AD2, 8.Mod5.AD5

Lesson 13: Writing and Solving Systems of Equations for RealWorld Problems

- Write and solve a system of linear equations given a real-world situation 8E.C 8b, 8E.C 8.c, MP2 8.Mod5.AD2, 8.Mod5.AD5

Lesson 14: Back to the Coordinate Plane

- Write and solve systems of linear equations when given information about two lines to identify intersection points.
8.EE.C.8.a, 8.EE.C.8.b, 8.EE.C.8.c, MP1, 8.Mod5.AD1, 8.Mod5.AD2, 8.Mod5.AD3
- Informally fit a line to data displayed in a scatter plot.
- Make predictions based on the graph of a line fit to data.
8.SP.A.2, MP3, 8.Mod6.AD9

Lesson 14: Determining an Equation of a Line Fit to Data

- Determine an equation of a line
informally fit to data displayed in a scatter plot and interpret the slope and y-intercept in context.
8.SP.A.3, MP6, 8.Mod6.AD10

Lesson 15: Linear Models
Lesson 15: Linear Models - association between two numeric variables.

- Informally assess the fit of a line to data in a scatter plot by judging the closeness of the data points to the closeness of the data points to the
8.SP.
8.SP.A 2, 8.SP.A.3, MP7,
8.Mod6.AD9, 8.Mod6.AD10

Lesson 16: Using the Investigative Process

- Use the investigative process to
explore claims about proportiona
relationships in the human body.
8.SP.A.2, 8.SP.A.3, MP4,
8.Mod6.AD9, 8.Mod6.AD10

Lesson 17: Analyzing the Model

- Present the results of a statistical investigation.
- Critique the statistical investigations presented by others.
8.SP.A.2, 8.SP.A.3, MP2,
8.Mod6.AD9, 8.Mod6.AD10

Topic D: Bivariate Categorical Data

Lesson 19: Using the Pythagorean
Theorem
- Apply the Pythagorean theorem to
find the unknown length of the
hypotenuse of a right triangle.
- Find two consecutive whole numbers
which the length of the hypotenuse is
between when the length is not
rational.
- Use square root notation to express
lengths that are not rational.
8.G.B.7, MP2, 8.Mod1.AD15
Lesson 20: Square Roots
- Place square roots on a number line.
8.EE.A.2, 8.G.B.7, MP8,
8.Mod1.AD6, 8.Mod1.AD15
Topic E: Irrational Numbers
Lesson 21: Approximating Values of
Roots and π^{2}
- Approximate values of square roots,
cube roots, and π^{2}.
8.NS.A.2, 8.Mod1.AD3,
8.Mod1.AD4
Lesson 22: Familiar and Not So
Familiar Numbers
- Identify numbers as rational,
irrational, and real by their decimal
form.
- Compare the characteristics of
rational and irrational numbers.
8.NS.A.1, 8.EE.A.2, MP3,
8.Mod1.AD1
Lesson 23: Ordering Irrational
Numbers
- Order irrational numbers.
- Approximate the value of expressions
with irrational numbers.
8.NS.A.2, MP7, 8.Mod1.AD2,
8.Mod1.AD3, 8.Mod1.AD4

\section*{| 8.G.B.6, 8.G.B.7, MP7, |
| :--- |
| 8.Mod2.AD7, 8.Mod2.AD8 |
 Lesson 20: Distance in the
 Coordinate Plane
 - Find the distance between two points in the coordinate plane by using the} 8.G.B.8, MP7, 8.Mod2.AD9

Lesson 21: Applying the

Pythagorean Theorem

- Apply the Pythagorean theorem to solve real-world and mathematical problems.
- Evaluate square roots.
8.G.B.7, MP2, 8.Mod2.AD8

Lesson 22: On the Right Path

- Model a situation by using the

Pythagorean theorem and the
distance on a grid to solve a problem 8.G.B.7, 8.G.B.8, MP4, 8.Mod2.AD8, 8.Mod2.AD9

Approximate values
cube roots, and π^{2}.

8.Mod1.AD4

Familiar Numbers

- Identify numbers as rational irrational, and real by their decimal form.
Compare the characteristics of
8.NS.A.1, 8.EE.A.2, MP3,
8.Mod1.AD1

Lesson 23: Ordering Irrationa

Numbers

- Approximate the value of expressions with irrational numbers.
- Find slopes of falling lines by using slope triangles.
- Graph a falling line given the slope and a point on the line.

8.EE.B.6, MP3, 8.Mod4.AD7

Lesson 19: Using Coordinates to Find Slope

- Develop a formula for the slope of a line.
- Find the slope of a line given the coordinates of at least two points on the line.
8.EE.B.6, MP8, 8.Mod4.AD7

Topic E: Different Forms of Linear Equations

Lesson 20: Slope-Intercept Form of the Equation of a Line

- Use similar triangles to develop the slope-intercept form of the equation of a line.
- Write equations in slope-intercept form from graphs and graph equations given in slope-intercept form.
8.EE.B, 8.EE.B.6, MP7,
8.Mod4.AD2, 8.Mod4.AD8

Lesson 21: Slope and Parallel Lines

- Determine the relationship between slope and parallel lines.
- Determine whether lines are parallel.
8.EE.B, MP3, 8.Mod4.AD2

Lesson 22: Point-Slope Form of the

Equation of a Line

- Use similar triangles to develop the point-slope form of the equation of a line.
- Graph equations given in point-slope form and write equations in pointslope form given graphs.
8.EE.B, MP7, 8.Mod4.AD2

Lesson 18: Bivariate Categoric

 Data- Construct and interpret a two-way table summarizing a bivariate categorical data set.

8.SP.A.4, MP7, 8.Mod6.AD1

Lesson 19: Association in Bivariate Categorical Data

- Determine whether there is evidence of an association between categorical variables that have two possible values.
- Compare and contrast evidence of an association represented in two-way tables and segmented bar graphs.
8.SP.A.4, MP6, 8.Mod6.AD11,
8.Mod6.AD12

Lesson 20: Analyzing Bivariate Categorical Data

- Determine whether there is evidence of an association between categorical variables that have two or more
possible values.
Describe the difference between an association and a cause and effect 8.SP.A.4, MP5, 8.Mod6.AD11,
8.Mod6.AD12

Topic E: Volume

Lesson 21: Volumes of Prisms and Pyramids

- Find the volume of prisms.
- Develop and use the formula for the volume of a pyramid.
8.G.C.9, MP6, 8.Mod6.AD13

Lesson 22: Volume of Cylinders

- Develop and use the formula for the volume of a cylinder
- Find volumes of oblique cylinders and prisms.
8.G.C.9, MP8, 8.Mod6.AD13

Lesson 24: Revisiting Equations
with Squares and Cubes
- Solve equations of the forms $x^{2}=p$
and $x^{3}=p$, where p is a rational
number and the solutions are real
numbers.
8.EE.A.2, MP6, 8.Mod1.AD6

Lesson 23: Comparing Equations in Different Forms
 - Determine whether linear equations in different forms represent the same line.
 - Write linear equations from tables. 8.EE.B, MP7, 8.Mod4.AD2

Topic F: Graphing and
Writing Linear Equations
Lesson 24: The Patterns, the Pops, and the Pastries

- Write an equation of a line given a
graph.
- Write an equation of a line given
information about the line

8.EE.B, MP1, 8.Mod4.AD2

Lesson 25: Lines, Lines, and More Lines

- Graph linear equations given in
various forms.
8.EE.B, MP5, 8.Mod4.AD2

Lesson 26: Linear Equations from Word Problems

- Use linear equations to solve

Use linear equations to solve
problems with real-world contexts. 8.EE.B, MP2, 8.Mod4.AD4

Lesson 27: Get to Work

- Model a real-world situation with inear equations and use the equations to answer questions about the situation.
- Interpret the meaning of different components of the linear equations in context.
8.EE.B, MP1, 8.Mod4.AD4
- Solve problems involving volumes of cylinders, cones, prisms, and pyramids.
8.G.C.9, MP7, 8.Mod6.AD13

Lesson 24: Volume of Spheres

- Develop and use the formula for the volume of a sphere.
- Solve problems involving volumes of cylinders, cones, and spheres.

Lesson 25: Applications of Volume - Use functions to solve problems involving volumes of cylinders, cones, and spheres.
8.F.B.4, 8.G.C.9, MP1,
8.Mod6.AD4, 8.Mod6.AD13

